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The conditional lifetime expectancy function (LEF) is the expected
lifetime of a subject given survival past a certain time point and the
values of a set of explanatory variables. This function is attractive to
researchers because it summarizes the entire residual life distribu-
tion and has an easy interpretation compared with the popularly
used hazard function. In this paper, we propose a general frame-
work of backward multiple imputation for estimating the condi-
tional LEF and the variance of the estimator in the right-censoring
setting. Simulation studies are conducted to investigate the empir-
ical properties of the proposed estimator and the corresponding
variance estimator. We demonstrate themethod on the Beaver Dam
Eye Study data, where the expected human lifetime is modeled
with smoothing-spline ANOVA given the covariates information
including sex, lifestyle factors, and disease variables.

lifetime expectancy | imputation | smoothing-spline ANOVA |
right-censored survival data | human longevity

Survival analysis has focused on the popular hazard function
for decades, and one of the most famous models is Cox’s

proportional hazard model (1). However, the hazard function,
defined as the risk of immediate failure, can be conceptually dif-
ficult to understand. The expected or remaining lifetimes are in-
tuitively more attractive because of the easy interpretation and
turn out to be a more relevant metric under many circumstances.
For example, it is more transparent to patients if the doctor ex-
plains it as “on average, the lifetime is expected to be 80 y if one,
also at 70 y with similar demographic and healthy background like
you, takes this treatment,” rather than in the language of “the
average hazard is expected to decrease by 25% among the treated
patients similar to you.” Furthermore, in the analysis of reliability
and actuarial data, a life insurance company may care more about
the life expectancy of a person, and an engineering firm might
want to know the expected remaining lifetime of a system given
survival past certain time. This motivates us to focus more atten-
tion on direct estimation of key summary measures regarding
remaining lifetimes. This paper targets lifetime expectancy func-
tion and the mean residual life function.
The lifetime expectancy function (LEF) of a survival time T

(with T > 0), denoted by eðtÞ, is defined as

eðtÞ=EðTjT > tÞ= t+
ZτT
t

SðuÞ
SðtÞ du,

where SðtÞ=PðT > tÞ is the survival function and τT = inf
ft : SðtÞ= 0g. DenotemðtÞ the mean residual life function (MRLF),
which is the expected remaining lifetime given survival up to
time t and

mðtÞ= eðtÞ− t=EðT − tjT > tÞ.

eðtÞ uniquely determines SðtÞ as the following equation shows (2):

SðtÞ= eð0Þ
eðtÞ− t

exp
�
−
Z t

0

½eðuÞ− u�−1du
�
.

Ref. 2 provides necessary and sufficient conditions, such that
mðtÞ is a proper MRLF [or that eðtÞ is a proper LEF]. That is,
FðtÞ=PðT ≤ tÞ is a proper continuous distribution function if and
only if mðtÞ satisfies:
1. mðtÞ≥ 0 for all t≥ 0;
2. eðtÞ=mðtÞ+ t is nondecreasing in t;
3. if there exists a τ such that mðτÞ= 0 then mðtÞ= 0 for all t≥ τ,

otherwise,
R∞
0 mðtÞ−1dt=∞;

4. mðtÞ is a right continuous function and has a left limit with
positive increments at discontinuities.

In practice, real data always contain additional information
besides the survival time itself and researchers are interested in
how the variables contribute to lifetimes. This is when the con-
ditionality of LEF or MRLF plays a role. For example, in the
context of mobile devices, modeling the conditional LEF that the
users keep active with certain apps or games after installation
helps the providers target and stratify their customers, and offers
insights about the effectiveness of different features related to
the product. In the situation of property purchase, it is of interest
to both seller and buyer to know how long it takes for a house to
be sold after being listed for sale by a certain agent or on a real
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estate website considering the size, building year, location, and
estimated price of the house. Moreover, as we will depict in our
real data analysis, lifestyle factors such as smoking and socio-
economic status, disease, and healthy metrics are all informative
toward one’s expected lifespan.
In this paper, we propose a framework for estimating the

conditional LEF eðtjxÞ=EðTjT > t,X = xÞ when covariates X in-
formation is available and the survival times are subject to right
censoring. Following the same idea with the Buckley–James esti-
mator (3) to address censoring by imputation, our method replaces
the censored survival times in backward order with a heuristic guess
of a fitted LEF using a user-specific base model and the covariates.
One is then able to model LEF with a completely imputed dataset.
We provide variance estimation and confidence interval for the
estimated LEF based on the idea of multiple imputation (4). When
there is no covariate, our estimator is proven to be the same as the
one derived by inverting the Kaplan–Meier estimator for the sur-
vival function (5). Considerable research has been done on esti-
mation of the conditional MRLF (6, 7). Ref. 8 discussed different
semiparametric conditional MRLF estimations and ref. 9 covered
nonparametric estimation for MRLF with covariates; we show that
this method is equivalent to our framework by choosing kernel re-
gression as the base model. We investigate the behaviors of our
proposed estimator in practical settings via different simulation
studies. Finally, we demonstrate our method to model human
lifetimes with the Beaver Dam Eye Study data (10), where survival
information and a number of useful variables, from demographic
records to medical measurements, are included.

Semiparametric and Nonparametric Estimation of
Conditional MRL Function
There are several papers in the literature that discuss how to
estimate MRL function mðtjxÞ with right censoring conditional
on x= ðx1,⋯, xpÞT, which is the p-dimensional vector of explan-
atory variables. It is easy to obtain the corresponding LEF eðtjxÞ
by t+mðtjxÞ. First, ref. 8 considered the semiparametric pro-
portional MRL model

mpðtjxÞ=mp
0ðtÞexp

�
βTx

�
,

where mp
0ðtÞ is a baseline MRL function and β is a p-dimensional

vector of regression coefficients. Ref. 6 proposed to estimate
mðtjxÞ as an additive expectancy regression model. The model
takes a semiparametric form of

maðtjxÞ=ma
0ðtÞ+ γTx,

where ma
0ðtÞ is a baseline MRL function and γ is a p-dimensional

vector of regression coefficients. Ref. 7 framed the general fam-
ily of semiparametric transformation models

mgðtjxÞ= g
�
m0ðtÞ+ βTx

�
,

which includes the previous proportional and additive models as
special cases.
As discussed in ref. 9, the nondecreasing property of eðtjxÞmay

be violated under the existing semiparametric models. The au-
thors in ref. 9 considered taking a different perspective to satisfy
this natural constraint. They first calculate the nonparametric
estimation ŜPðtjxÞ of the conditional survival function using a
generalized Kaplan–Meier estimator according to refs. 11, 12,
and then take the inversion to obtain the nonparametric esti-
mator m̂PðtjxÞ for the conditional MRL function. A smoothed
estimation of MRL is available by inverting the smoothed ŜPðtjxÞ
based on Bernstein polynomials. It is straightforward that m̂PðtjxÞ
is a valid MRL function because ŜPðtjxÞ is a well-defined sur-
vival function.

Backward Multiple Imputation Framework for Estimating
LEF
Backward Imputation Without Covariates. Let us first consider the
cases without any covariate to intuitively understand the idea.
Let T be a continuous nonnegative random variable and C be the
censoring variable. We assume that T and C are independent.
The observed data set consists of n independent and identically
distributed (i.i.d.) replicates of ðYi, δiÞ, i= 1,⋯, n, where Yi =
minðTi,CiÞ  and δi = IfTi≤Cig is the censoring indicator. Let
yð1Þ <⋯< yðMÞ be the distinct ordered values of the n observations
and n1,⋯, nM be the corresponding number of observa-
tions taking each specific value of yðiÞ, i= 1,⋯,M. Denote
tð1Þ <⋯< tðKÞ and cð1Þ <⋯< cðJÞ the distinct ordered event times
and censored times, respectively. The notation nðtðkÞÞ or nðcðjÞÞ
takes the number of observations at tðkÞ or cðjÞ.
The cðjÞ s are right censored and we know that the true values

should be greater than the censored times cðjÞ. One reasonable
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Fig. 1. Lifetime expectancy function estimation by smoking, heart disease,
and income for the group with baseage = 70, sex = F, BMI = 28 (median of
the population), edu = 12 (median of the population) and no other disease.
The x axis is time t from 70 to 93. The y axis is êðtjX = xÞ. The shaded area
presents 95% normal confidence intervals.

Table 1. Variable description in the SS-ANOVA model

Variable Units Description

lastage years Censored age at death
survflag yes/no Survival indicator
baseage years Age at baseline
Sex F/M Sex
edu years Highest year school/college completed
BMI kg/m2 Body mass index
Smoke yes/no History of smoking
Income yes/no Household personal income > 20 K
Diabetes yes/no History of diabetes
Cancer yes/no History of cancer
Heart yes/no History of cardiovascular disease
Kidney yes/no History of chronic kidney disease

12070 | www.pnas.org/cgi/doi/10.1073/pnas.1512237112 Kong et al.
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guess for the true values is the lifetime expectancy at cðjÞ, i.e.,
eðcðjÞÞ=EðTjT > cðjÞÞ. This is the same idea as the single impu-
tation of Little and Rubin (13) and as the Buckley–James esti-
mator (3). We could use the sample lifetime expectancy, which is
the mean of the observations greater than cðjÞ, as an estimate for
eðcðjÞÞ. However, this does not work if censored data still exist to
the right of the targeted cðjÞ. We can address this problem by
processing our guessing regime for cðjÞ s backwardly from J to 1.
After imputing the censored values, it is easy to obtain sample
lifetime expectancy at any time point t. The detailed steps are
as follows:
Algorithm 1: Backward imputation without covariates

1. We do nothing if cðJÞ is the largest value in the dataset, i.e.,
cðJÞ = yðMÞ. Otherwise, we estimate eðcðJÞÞ by the sample mean
of the observations beyond cðJÞ, i.e.,

êB
�
cðJÞ

�
=

Pn
i=1 yiIfyi>cðJÞgPn
i=1Ifyi>cðJÞg

=

PK
k=1tðkÞn

�
tðkÞ

�
IftðkÞ>cðJÞgPK

k=1n
�
tðkÞ

�
IftðkÞ>cðJÞg

.

Replace cðJÞ by êBðcðJÞÞ and treat it as observed.

2. Repeat the above procedure backwardly for j= J − 1,⋯, 1 to
replace cðjÞ by êBðcðjÞÞ, which is the sample mean of the ob-
servations beyond cðjÞ in the imputed data. Because the pro-
cess runs for j from J to 1, we will have imputed all of the
censored values greater than cðjÞ and there is no “missingness”
to estimate eðcðjÞÞ by the sample mean of the observations
larger than cðjÞ.

3. Let ~y1,⋯,~yn be the data after backward imputation proce-
dure. If yi is observed or it is the largest observation and is
censored, then ~yi = yi. Otherwise, yi is one of the censored
times and ~yi = êBðyiÞ. The backward procedure only obtains
estimates of eðtÞ at the censored times. In general, we esti-
mate eðtÞ for t≥ 0 by the following formula:

êBðtÞ=
Pn

i=1~yiIfyi > tgPn
i=1Ifyi > tg .

Relationship with Kaplan–Meier Estimator. Another way to obtain
an estimator for eðtÞ is by inverting an estimator for SðtÞ. We
know that Kaplan–Meier estimator ŜKMðtÞ is the MLE for SðtÞ
with respect to the empirical likelihood. Denote êKMðtÞ the

estimate for eðtÞ by inverting ŜKMðtÞ. The following theorem
proves the equivalence between êBðtÞ and êKMðtÞ. This also
demonstrates the equivalence between the spirit of backward
imputation and the idea of redistribution-to-the-right to estimate
survival function established by ref. 14.
Theorem 1. Let T be a continuous nonnegative random vari-

able which is independent of the censoring variable C. We observe
n i.i.d. replicates of ðYi, δiÞ, i= 1,⋯, n, where Yi =minðTi,CiÞ and
δi = IfTi≤Cig. Denote êBðtÞ the backward imputation estimator for
eðtÞ as described in Algorithm 1 and êKMðtÞ the inverted Kaplan–
Meier estimator for eðtÞ, which takes the following explicit form:

êKMðtÞ=

tðkÞ +
PK

l=k+1

�
tðlÞ − tðl−1Þ

�
ŜKM

�
tðl−1Þ

�
ŜKM

�
tðk−1Þ

� ,  

if tðk−1Þ < t< tðkÞ;

tðkÞ +
PK

l=k+1

�
tðlÞ − tðl−1Þ

�
ŜKM

�
tðl−1Þ

�
ŜKM

�
tðkÞ

� ,  

if t= tðkÞ, k= 1,⋯,K − 1; 0,   if t≥ tðKÞ.

8>>>>>>>>>>><
>>>>>>>>>>>:

Then êBðtÞ= êKMðtÞ for t≥ 0.

Backward Imputation with Covariates. We want to make use of the
covariates information for estimating LEF. We assume the cen-
soring to be conditionally independent of the survival time given
the covariates X = x. Now our observations are n i.i.d sam-
ples ðYi, δi, xiÞ, i= 1,⋯, n, where Yi =minðTi,CiÞ and δi = IfTi≤Cig.
Suppose we have a base regression model f ðxÞ=EðTjX = xÞ that
uses the covariates information to predict the mean survival times
when there is no censoring. We substitute the sample mean in the
previous backward imputation procedure by the base regression
model. This means that we treat the estimate for eðcðjÞ

��xÞ=
EðTjT > cðjÞ,X = xÞ as our guess for the censored case cðjÞ with its
covariates x. The following algorithm illustrates the detailed steps.
Algorithm 2: Backward imputation with covariates.

1. We do nothing if cðJÞ is the largest response value in the
dataset, i.e., cðJÞ = yðMÞ. Otherwise, we obtain the fitted model
f̂ using the observations fðyi, xiÞjyi > cðJÞg. Note that all of
the observations with yi > cðJÞ should be uncensored in this
step by the definition of cðJÞ. Replace cðJÞ by f̂ ðx0Þ, where x0
represents the observed covariates values for cðJÞ, and treat it
as observed.
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Fig. 2. LEF estimation by diabetes and chronic kidney disease for subjects with baseage = 70, sex = F, smoke = no, income ≥ 20 K, BMI = 28, edu = 12, and no
heart disease, cancer, or stroke. The x axis is time t from 70 to 93. The y axis is êðtjX = xÞ. The shaded area presents 95% normal confidence intervals.
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2. Repeat the above procedure backwardly for j= J − 1,⋯, 1
with the imputed data.

3. Let ~y1,⋯,~yn be the data after backward imputation procedure.
Obtain the fitted base model f̂ using the data fð~yi, xiÞjyi > tg
and we estimate eðtjxÞ by f̂ ðxÞ.
There are several advantages of this framework. One is that it

allows time-varying effects of the covariates because we obtain
the fitted eðtjxÞ restricted to the subset of the data with the
original censored survival time greater than the time point t.
Another flexibility about this procedure is the freedom to choose
the base model f that describes the data the best. The following
theorem, with proof in SI Appendix, states that implementing
kernel regression as the base model in backward imputation
procedure is equivalent to the nonparametric estimator êPðtjxÞ
proposed by McLain and Ghosh (9). This also implies that êPðtjxÞ
shares the similar pros and cons to kernel regression. For ex-
ample, one has to take care with the choice of kernel, the con-
tamination in the distance due to irrelevant variables, and curse
of dimensionality. One is able to address these issues by applying
more appropriate base models in backward imputation method
to accommodate different datasets.
Theorem 2. Let K :Rp →R be the p-dimensional kernel function

and hn denote the bandwidth. Let êBðtjxÞ be the estimator for eðtjxÞ
from backward imputation using kernel regression with K and hn,
and êPðtjxÞ be the nonparametric estimator of the conditional LEF
proposed in ref. 9 using the same K and hn. Then êBðtjxÞ= êPðtjxÞ
for t≥ 0 given x.

Variance Estimation with Multiple Imputation. The methods illus-
trated above are in the fashion of single imputation, which does
not take into account the uncertainty about the predictions of the
unknown censored values. It is likely that the variance estimation
for êBðtjxÞ is biased toward zero. We incorporate the idea of
multiple imputation procedure (4) in our proposed method.
Instead of filling in the conditional expected values for each
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Fig. 3. LEF estimation by BMI, edu, and sex for the subgroup with baseage = 70, smoke = no, income ≥ 20 K, and no disease. The x axis is time t from 70 to
93. The y axis is êðtjX = xÞ. The shaded area presents 95% normal confidence intervals.
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censored value as described above, we replace by a random
sample drawn from the posterior predictive distribution under
the base model each time. It introduces randomness that rep-
resent the uncertainty about the right value to impute. We repeat
the backward multiple imputation a number of times and the
results are combined finally to obtain a valid variance estimation
and confidence interval for the estimate of conditional LEF. The
procedures are shown below.
Algorithm 3: Backward multiple imputation with covariates.

1. Set up the number of multiple imputation m. For each rep-
lication, repeat steps 2–4.

2. We do nothing if cðJÞ is the largest response value in the
dataset, i.e., cðJÞ = yðMÞ. Otherwise, we obtain the fitted model
f̂ using the observations fðyi, xiÞjyi > cðJÞg. Note that all of the
observations with yi > cðJÞ should be uncensored in this step by
the definition of cðJÞ. Replace cðJÞ by a random sample from
the posterior predictive distribution of the fitted model at x0,
where x0 represents the observed covariates values for cðJÞ,
and treat it as observed.

3. Repeat the above procedure backwardly for j= J − 1,⋯, 1
with the imputed data.

4. Let ~y1,⋯,~yn be the data after backward imputation proce-
dure. Obtain the fitted base model f̂ using the data
fð~yi, xiÞjyi > tg and we estimate eðtjxÞ by f̂ ðxÞ. Moreover, keep
record of the estimated variance for f̂ ðxÞ.

5. With m imputations, one collects m different sets of the point
and variance estimates for eðtjxÞ. Let Q̂i and Ûi be the point
and variance estimates of eðtjxÞ from the ith imputed data set,
i= 1,⋯,m. Note that Q̂i and Ûi are functions of x and we
eliminate the dependency on x in the notation for simplicity.

6. The point estimate for eðtjxÞ from multiple imputations is Q=
1=m

Pm
i=1Q̂i.

7. Let U be the within-imputation variance and B be the be-
tween-imputation variance U = 1=m

Pm
i=1Ûi,  B= 1=ðm− 1ÞPm

i=1ðQ̂i −QÞ2. The variance estimation for the estimated
eðtjxÞ is the total variance T =U + ð1+ ð1=mÞÞB.

8. The statistic ðQ−QÞT−1=2 is approximately distributed as
a t distribution with degrees of freedom vm = ðm− 1Þ½1+
ðU=ð1+m−1ÞBÞ�2. When vm is large, one may approximate
by a normal distribution. The confidence interval for eðtjxÞ
can be derived accordingly.

A brief illustration about the idea of multiple imputation and
simulation studies to demonstrate the effectiveness of the backward
multiple imputation method are presented in SI Appendix.

Application to Beaver Dam Eye Study Data
Data Description. The Beaver Dam Eye Study (BDES) (10) is an
ongoing population-based study of age-related ocular disorders
with 5-, 10-, 15-, and 20-y follow-ups. Subjects at baseline, ex-
amined between 1988 and 1990, were a group of 4,926 people
aged 43–86 y from Beaver Dam, Wisconsin. The survival sta-
tuses, including ages at death, for this population were updated
by 31 Dec 2013 with 2,014 individuals who were alive. BDES
provides us an excellent opportunity to study the lifetime ex-
pectancy with our proposed methods.
A number of variables, including measurements on individual

health and lifestyles, were recorded in the study. We took ad-
vantage of a couple of the most important ones which were used
in ref. 15 to examine the association with human mortality. To
maintain the largest sample sizes, we focused on the baseline
data. Table 1 lists the description of all of the variables involved
in the study. A number of variables with weak signals for lon-
gevity are discussed in SI Appendix.

Model Fitting and Results. The smoothing-spline ANOVA model
(16–18) has a successful history in modeling BDES data

(15, 19). Our base model is an SS-ANOVA model with the
following form:

ðimputedÞ  lastage  =   μ+ f1ðbaseageÞ+ βgenderIfgender=Fg
+ f2ðeduÞ+ f12ðbaseage : eduÞ
+ f3ðBMIÞ+ βsmokeIfsmoke=nog
+ βincIfinc>20Kg + βdiabetesIfdiabetes=nog
+ βcancerIfcancer=nog + βheartIfheart=nog
+ βkidneyIfkidney=nog ð * Þ

Functions f1, f2, and f3 are cubic splines and f12 uses the tensor
product construction. The remaining covariates are unpenalized and
modeled as linear terms with If · g as indicator functions. We incor-
porated this base model in Algorithm 3 with multiple imputation
replications m= 200 to estimate the conditional LEF in the popula-
tion of BDES. One adjustment we applied for Algorithm 3 was that
we used model ð*Þ if the sample size involved in step 2 of Algorithm 3
was greater than 100; otherwise, we simply used sample mean of
ages of death among all of the samples involved in this step. We
observed that both the estimations for LEF and the variance esti-
mation became stable after 20 multiple imputations.
Figs. 1–4 display the predicted conditional LEFs for the cohort

with baseline age of 70. In Fig. 1, we examine the effects of smoking,
cardiovascular disease, and income for the subgroup of females with
midvalued body mass index (BMI), education, and no other disease.
The natural constraint of monotonic nondecreasing over t for eðtjxÞ
is closely satisfied in practice. From the plots, it appears that
smoking and having a history of heart disease have negative in-
fluences on longevity in this population. Higher household income
slightly protects longevity. Fig. 2 discovers how diabetes and chronic
kidney disease change expected survival given the rest of covariates.
It turns out that diabetes is a strong risk factor that reduces human
longevity. Chronic kidney disease, although not as harmful as di-
abetes, also exerts a negative effects on survival times among this
subgroup of people.
In Fig. 3, we present how the expected lifetime changes with

BMI, education, and sex for nonsmoking rich and healthy in-
dividuals with baseage of 70. The plots suggest that females tend
to have longer lifespans compared with males. Higher education
and midvalued BMI are protective for longevity. The covariates
effects fade out as t gets large with several possible reasons. First,
the sample size is limited when restricting to subjects over 85.
Second, it is likely that those long-lived individuals have survived
from the risk factors so that we could not find the significance for
the covariates. Notice that the nondecreasing constraint of LEF
can be violated when the sample size is small, as may be just
barely noticeable upon very close inspection of panels 3 and 4 on
the top row near the tail.
Fig. 4 takes a different perspective from the previous three

plots and focuses on the two continuous variables BMI and ed-
ucation for a cohort of rich and healthy female nonsmokers who
entered the study when they were 70. The five surfaces corre-
spond to five time points, t= 70,75,80,85 and 90. Each surface
represents the estimated expected lifetime across different val-
ues of BMI and education. When t is small, we observe the
quadratic influence of BMI where very low BMI values are very

Table 2. Comparison of the estimates of e(tjx) and its estimated
SD by bootstrap and backward multiple imputation

Quantiles Q0.1 Q0.25 Q0.5 Q0.75 Q0.9

êBMðtjxÞ
êBOOT ðtjxÞ 0.9971 0.9987 1.0006 1.0031 1.0053cstdfêBMðtjxÞgcstdfêBOOT ðtjxÞg

0.7561 0.8694 0.9897 1.0929 1.1959
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harmful and the optimal value happens at around 26 or 27 and
tails down slowly for higher values. Note that Beaver Dam is a
small town in the Midwest and may not be representative of
some population groups in other areas of the country. The ed-
ucation displays a monotonic increasing effect on lifetime in this
cohort. The higher the completed education is, the longer the
expected lifetime is. When t gets large, we again find that the
influences of BMI and education disappear. More results about
some other weakly related variables and other baseline age co-
horts are discussed in SI Appendix.

Validation Using Bootstrapped Samples. This is an observational
study and the true eðtjxÞ is unknown. We used the bootstrap
method to get the empirical distributions of eðtjxÞ for different
values of t and x to check if the results coming from backward
multiple imputation match the mean and SD of the empirical
distribution. The following steps cover the bootstrap details.

1. Obtain bootstrap samples by resampling with replacement.
2. Use backward imputation, Algorithm 2, with SS-ANOVA on

the bootstrapped samples.
3. Estimate eðtjxÞ with the imputed bootstrap data for the com-

binations of t and x used to generate Figs. 1–3.
4. Repeat steps 1–3 for 1,000 times to get empirical distribution

of eðtjxÞ for each combination of t and covariates values.

From the above bootstrap procedure, we obtained estimated
mean and SE of eðtjxÞ from the empirical distributions, denoted as
êBOOTðtjxÞ and cstdfêBOOTðtjxÞg, respectively. We could compare
those with the ones derived from the previous backward multiple
imputation, denoted as êBMðtjxÞ and cstdfêBMðtjxÞg. For baseline age
of 70, there were 6,400 combinations of t and covariates values
where t runs from 70 to 93. Table 2 summarizes the differences
between the ratios of the two estimators and the ratios of the two
corresponding estimated SDs. The ratios between the estimators are
closely centered at 1. The ratios between the two SDs spread out a
little bit but still concentrate around 1, meaning that êBMðtjxÞ andcstdfêBMðtjxÞg match the empirical distribution fairly well. Further-
more, the bootstrapped distributions of êðtjxÞ are very much close to
normal distribution; for details see SI Appendix, Fig. S9, which val-
idates our use of normal confidence intervals.

Discussion
In this article, we presented our backward multiple imputation
framework for estimating the conditional LEF. In the case without
covariates, our estimator is proven to be equivalent to the esti-
mation for LEF by inverting the Kaplan–Meier survival function
estimator. In the case with covariates, one is free to select a base
model that best captures the data. One is able to recover the
nonparametric estimator for conditional LEF proposed in ref. 9
based on the generalized Kaplan–Meier estimator by using kernel
regression in our framework. The simulation studies demon-
strated the performance of our methods and validated the use of
multiple imputation for variance estimation under three dif-
ferent settings. The application to the Beaver Dam Eye Study
data illustrated the use of SS-ANOVA model together with our
backward multiple imputation method. We presented the fitted
results for the cohorts with baseline age of 70 where a number of
variables, including sex, smoking, education level, BMI values,
and several diseases, were shown to be significantly associated
with human longevity.
There are a couple of issues that we will consider as our future

direction. First, as pointed out by ref. 9, many existing models for
estimating MRLF or LEF do not satisfy the nondecreasing
property of eðtjxÞ. We know that kernel regression ensures the
validation of this condition. The real application using SS-
ANOVA in BDES data provided satisfactory nondecreasing
curves in most situations, with slight violation when sample sizes
were small. It is of our practical and theoretical interest to ex-
plore what base models guarantee this property as well. One
possible solution is to impose constraints in the backward im-
putation procedure so that the predicted eðt1jxÞ≤ eðt2jxÞ for
t1 ≤ t2. In this paper, we discussed the use of multiple imputation
to obtain the variance estimation for the estimated LEF. Still
more research about the other ways to construct the variance
estimator under certain base models, including asymptotic dis-
tributions of the LEF estimator, is needed to reduce the burden
in computation. Please see Supporting Information regarding
access to data and computer code.
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